Electric-Field-Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination

Adv Mater. 2020 Apr;32(16):e1903954. doi: 10.1002/adma.201903954. Epub 2020 Mar 1.

Abstract

Layered graphene oxide membranes (GOMs) offer a unique platform for precise sieving of small ions and molecules due to controlled sub-nanometer-wide interlayer distance and versatile surface chemistry. Pristine and chemically modified GOMs effectively block organic dyes and nanoparticles, but fail to exclude smaller ions with hydrated diameters less than 9 Å. Toward sieving of small inorganic salt ions, a number of strategies are proposed by reducing the interlayer spacing down to merely several angstroms. However, one critical challenge for such compressed GOMs is the extremely low water flux (<0.1 Lm-2 h-1 bar-1 ) that prevents these innovative nanomaterials from being used in real-world applications. Here, a planar heterogeneous graphene oxide membrane (PHGOM) with both nearly perfect salt rejection and high water flux is reported. Horizontal ion transport through oppositely charged GO multilayer lateral heterojunction exhibits bi-unipolar transport behavior, blocking the conduction of both cations and anions. Assisted by a forward electric field, salt concentration is depleted in the near-neutral transition area of the PHGOM. In this situation, deionized water can be extracted from the depletion zone. Following this mechanism, a high rejection rate of 97.0% for NaCl and water flux of 1529 Lm-2 h-1 bar-1 at the outlet via an inverted T-shaped water extraction mode are achieved.

Keywords: 2D layered materials; heterostructures; ion transport; nanofluidics; water desalination.