Structure and dynamics of ethane confined in silica nanopores in the presence of CO2

J Chem Phys. 2020 Feb 28;152(8):084707. doi: 10.1063/1.5134451.

Abstract

Fundamental understanding of the subcritical/supercritical behavior of key hydrocarbon species inside nano-porous matrices at elevated pressure and temperature is less developed compared to bulk fluids, but this knowledge is of great importance for chemical and energy engineering industries. This study explores in detail the structure and dynamics of ethane (C2H6) fluid confined in silica nanopores, with a focus on the effects of pressure and different ratios of C2H6 and CO2 at non-ambient temperature. Quasi-elastic neutron scattering (QENS) experiments were carried out for the pure C2H6, C2H6:CO2 = 3:1, and 1:3 mixed fluids confined in 4-nm cylindrical silica pores at three different pressures (30 bars, 65 bars, and 100 bars) at 323 K. Two Lorentzian functions were required to fit the spectra, corresponding to fast and slow translational motions. No localized motions (rotations and vibrations) were detected. Higher pressures resulted in hindrances of the diffusivity of C2H6 molecules in all systems investigated. Pore size was found to be an important factor, i.e., the dynamics of confined C2H6 is more restricted in smaller pores compared to the larger pores used in previous studies. Molecular dynamics simulations were performed to complement the QENS experiment at 65 bars, providing supportive structure information and comparable dynamic information. The simulations indicate that CO2 molecules are more strongly attracted to the pore surface compared to C2H6. The C2H6 molecules interacting with or near the pore surface form a dense first layer (L1) close to the pore surface and a second less dense layer (L2) extending into the pore center. Both the experiments and simulations revealed the role that CO2 molecules play in enhancing C2H6 diffusion ("molecular lubrication") at high CO2:C2H6 ratios. The energy scales of the two dynamic components, fast and slow, quantified by both techniques, are in very good agreement. Herein, the simulations identified the fast component as the main contributor to the dynamics. Molecule motions in the L2 region are mostly responsible for the dynamics (fast and slow) that can be detected by the instrument.