Double-stranded RNAs targeting HvRPS18 and HvRPL13 reveal potential targets for pest management of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata

Pest Manag Sci. 2020 Aug;76(8):2663-2673. doi: 10.1002/ps.5809. Epub 2020 Mar 12.

Abstract

Background: RNA interference (RNAi) is a potential tool for plant protection against insect pests. The great challenge for effective pest control using RNAi in the field is the development of efficient and reliable methods for the production and delivery of double-stranded RNA (dsRNA).

Results: In the present study, we investigated the potential of feeding in vitro synthesized or bacterially expressed dsRNA to populations of the 28-spotted ladybeetle Henosepilachna vigintioctopunctata as a method of biological pest control. Ingestion of in vitro synthesized dsHvRPS18 or dsHvRPL13 led to significant down-regulation of the ribosomal protein-encoding genes HvRPS18 and HvRPL13, respectively, and significantly decreased the survival of H. vigintioctopunctata. Such silencing of HvRPS18 or HvRPL13 expression appeared to be partially dose-dependent and also inhibited the growth of H. vigintioctopunctata and significantly suppressed the expression of digestive enzyme-related genes. Finally, ingestion of bacterially expressed dsHvRPS18 or dsHvRPL13 induced significant mortality in the first and third instars, and in adults.

Conclusion: The effectiveness of RNAi-based gene silencing in H. vigintioctopunctata provides a powerful reverse genetic tool for the functional annotation of its genes. This study demonstrates that HvRPS18 and HvRPL13 represent candidate genes for RNAi-based biological control of H. vigintioctopunctata. © 2020 Society of Chemical Industry.

Keywords: Henosepilachna vigintioctopunctata; HvRPL13; HvRPS18; bacterially expressed dsRNA; dietary RNAi.

MeSH terms

  • Animals
  • Coleoptera*
  • Gene Silencing
  • Pest Control, Biological
  • RNA Interference
  • RNA, Double-Stranded

Substances

  • RNA, Double-Stranded