Fast Polymerization of Polydopamine Based on Titanium Dioxide for High-Performance Flexible Electrodes

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):14495-14506. doi: 10.1021/acsami.9b19875. Epub 2020 Mar 10.

Abstract

Dopamine (DA) and its derivatives are promising for the fabrication of functional films and devices with excellent conductivity and long-term stability; nevertheless its polymerization process is typically prolonged. We have proposed the accelerated deposition process using ultraviolet (UV) irradiation with the existence of nanotitanium dioxide (nano-TiO2) in order to realize the rapid and stable synthesis of polydopamine (PDA) films. The in situ deposition process of nanostructured coatings such as platinum nanowire (PtNW) was also proposed by reducing the time of polymerization process to less than 1 h. It also increased the platinum (Pt) chelating rate with PDA, which was about 12 times faster than the traditional photo-oxidation method. Compared with the electrodes of the same size based on Ti/Pt sputtering, the impedance of the proposed PDA/TiO2/PtNW coated electrode was as low as 0.0968 ± 0.0054 kΩ at 1 kHz (reduction of 99.74%). An extremely high cathodic charge storage capacity (CSCc) up to 234.4 ± 3.16 mC cm-2 was also observed, which was about 106.5 and 1.6 times higher than that of Ti/Pt and PDA/PtNW electrodes, respectively. In addition to that, significant photocurrent polarization responses were presented for PDA/TiO2/PtNW electrodes with a stable current of -136.1 μA, exhibiting excellent charge transfer and UV absorption capacities. This co-deposition method has demonstrated great potential to speed up the polymerization process and enhance the electrical performance for flexible electrodes.

Keywords: Pt nanowire; dopamine; fast polymerization; flexible electrodes; nano-TiO2.