Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper-Hexadecafluorophthalocyanine

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):14542-14551. doi: 10.1021/acsami.9b22812. Epub 2020 Mar 11.

Abstract

Heteromolecular bilayers of π-conjugated organic molecules on metals, considered as model systems for more complex thin film heterostructures, are investigated with respect to their structural and electronic properties. By exploring the influence of the organic-metal interaction strength in bilayer systems, we determine the molecular arrangement in the physisorptive regime for copper-hexadecafluorophthalocyanine (F16CuPc) on Au(111) with intermediate layers of 5,7,12,14-pentacenetetrone and perylene-3,4,9,10-tetracarboxylic diimide. Using the X-ray standing wave technique to distinguish the different molecular layers, we show that these two bilayers are ordered following their deposition sequence. Surprisingly, F16CuPc as the second layer within the heterostructures exhibits an inverted intramolecular distortion compared to its monolayer structure.

Keywords: X-ray standing wave measurements; adsorption behavior; bilayer structure; molecular dipole moment; photoelectron spectroscopy; physisorption.