Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy

Theranostics. 2020 Jan 12;10(5):2260-2272. doi: 10.7150/thno.41317. eCollection 2020.

Abstract

Semiconducting polymers (SPs)-based dual photothermal therapy (PTT) obtained better therapeutic effect than single PTT due to its higher photothermal conversion efficiency. However, most dual PTT need to use two lasers for heat generation, which brings about inconvenience and limitation to the experimental operations. Herein, we report the development of "nanococktail" nanomaterials (DTPR) with 808 nm-activated image-guided dual photothermal properties for optimized cancer therapy. Methods: In this work, we co-encapsulated AIEgens (TPA-BDTO, T) and SPs (PDPPP, P) by using maleimide terminated amphiphilic polymer (DSPE-PEG2000-Mal, D), then further conjugated the targeting ligands (RGD, R) through "click" reaction. Finally, such dual PTT nanococktail (termed as DTPR) was constructed. Results: Once DTPR upon irradiation with 808 nm laser, near-infrared fluorescence from T could be partially converted into thermal energy through fluorescence resonance energy transfer (FRET) between T and P, coupling with the original heat energy generated by the photothermal agent P itself, thus resulting in image-guided dual PTT. The photothermal conversion efficiency of DTPR reached 60.3% (dual PTT), much higher as compared to its inherent photothermal effect of only 31.5% (single PTT), which was further proved by the more severe photothermal ablation in vitro and in vivo upon 808 nm laser irradiation. Conclusion: Such smart "nanococktail" nanomaterials could be recognized as a promising photothermal nanotheranostics for image-guided cancer treatment.

Keywords: A single laser; aggregation-induced emission fluorogens; dual photothermal therapy; fluorescence resonance energy transfer; semiconducting polymers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor / drug effects
  • Cell Line, Tumor / metabolism
  • Cell Line, Tumor / radiation effects
  • Drug Delivery Systems / methods
  • Fluorescence
  • Fluorescence Resonance Energy Transfer / instrumentation*
  • Hyperthermia, Induced / methods
  • Lasers
  • Ligands
  • Mice
  • Nanoparticles / administration & dosage
  • Nanoparticles / chemistry
  • Nanoparticles / therapeutic use
  • Photothermal Therapy / methods*
  • Polymers
  • Semiconductors
  • Theranostic Nanomedicine / methods*

Substances

  • Ligands
  • Polymers