Preparation and in vitro evaluation of an acidic environment-responsive liposome for paclitaxel tumor targeting

Asian J Pharm Sci. 2017 Sep;12(5):470-477. doi: 10.1016/j.ajps.2017.05.008. Epub 2017 May 25.

Abstract

Paclitaxel (PTX) is an important cancer chemotherapeutic drug. To ameliorate the disadvantages of paclitaxel, this study designed liposomes to load paclitaxel, adding the acid-sensitive material cholesteryl hemisuccinate (CHEMS) to increase the accumulation of the drug in the tumor site. To begin, we used a high-performance liquid chromatography (HPLC) method to determine the content of PTX and the encapsulation efficiency. Then, we prepared paclitaxel-loaded acid-sensitive liposomes (PTX ASLs) by a thin-film dispersion method. We investigated the physical and chemical properties of the liposomes. The particle size was 210.8 nm, the polydispersity index (PDI) was 0.182 and the ζ-potential was -31.2 mV. The liposome shape was observed by transmission electron microscopy (TEM), and the results showed that the liposomes were round with a homogenous size distribution. The release characteristics of the liposomes in vitro were studied via a dynamic dialysis method. The results showed that the prepared liposomes had acid sensitivity and sustained release properties. An in vitro cellular uptake assay of MCF-7 cells showed that the cell uptake of coumarin-6-loaded acid-sensitive liposomes was significantly higher than that of free coumarin-6. The cytotoxicity of the PTX ASLs was significantly higher than that of paclitaxel. In conclusion, these results showed that the prepared liposomes had clear acid-sensitive release characteristics and a higher cell uptake rate and cytotoxicity than free PTX. The system is very suitable for targeted cancer therapy with paclitaxel.

Keywords: Acid sensitive; Controlled release; Drug delivery; Paclitaxel-loaded liposome; Tumor oriented.