Novel approach to therapeutic targeting of castration-resistant prostate cancer

Med Hypotheses. 2020 Feb 19:140:109639. doi: 10.1016/j.mehy.2020.109639. Online ahead of print.

Abstract

Development of resistance to anti-androgen therapy limits the usefulness of second-generation androgen receptor (AR) antagonists including enzalutamide and abiraterone in castration resistant prostate cancer (CRPC) patients. Recent genomic studies reveal that AR-regulated genes contribute to CRPC emergence. Several reasons for the development of resistance towards anti-androgens have been hypothesized, including intracellular testosterone production, androgen overexpression, somatic mutations of AR resulting in a gain of function, constitutive activation of AR splice variants, imbalance in AR regulators, and bypass of AR in CRPC progression. Recent findings suggest that epigenetic alterations are involved in the deregulation of AR signaling. Overexpression of enhancer of zeste homolog 2 (EZH2), the enzymatic member of the polycomb repressor complex PRC2, has emerged as a key activator of AR in CRPC. Studies indicate that overabundance of EZH2 in localized prostate tumors increases the risk of biochemical recurrence after surgery, as it activates AR by enhancing methylation, resulting in the suppression of tumor suppressor genes and activation of oncogenes. This apparent association between EZH2 and AR in activating target genes by cooperative recruitment might play a critical role in the emergence of CRPC. Our hypothesis is that combination treatment targeting EZH2 and AR may be a novel efficacious therapeutic regime for the treatment of castrate resistant prostate cancer, and we propose to investigate this possibility.

Keywords: Androgen receptor; Castration resistant prostate cancer; Enhancer of zeste homolog 2; Polycomb repressor complex.