Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu-Exchanged Mordenite

Chemistry. 2020 Jun 18;26(34):7563-7567. doi: 10.1002/chem.202000772. Epub 2020 May 11.

Abstract

Copper-oxo clusters exchanged in zeolite mordenite are active in the stoichiometric conversion of methane to methanol at low temperatures. Here, we show an unprecedented methanol yield per Cu of 0.6, with a 90-95 % selectivity, on a MOR solely containing [Cu3 (μ-O)3 ]2+ active sites. DFT calculations, spectroscopic characterization and kinetic analysis show that increasing the chemical potential of methane enables the utilization of two μ-oxo bridge oxygen out of the three available in the tricopper-oxo cluster structure. Methanol and methoxy groups are stabilized in parallel, leading to methanol desorption in the presence of water.

Keywords: chemical potential; copper-trimer; methane oxidation; methanol production; zeolite.