Recognition of Sepsis in Resource-Limited Settings

Review
In: Sepsis Management in Resource-limited Settings [Internet]. Cham (CH): Springer; 2019. Chapter 4.
.

Excerpt

In this chapter, we summarize recommendations on sepsis recognition, identification of the underlying infection and causative microbiological pathogen, as well as recognition of septic shock in resource-limited settings. Early recognition of sepsis is based on the quick Sequential (Sepsis-related) Organ Failure Assessment (qSOFA): respiratory rate ≥22 bpm, systolic blood pressure ≤100 mmHg, and any acute change in mental state. For patients with severe malaria and severe dengue, more disease-specific criteria are of additional value. Identifying the cause and source of infection is important for the choice of treatment, to which knowledge of the local epidemiology, physical examination, and, depending on their availability, laboratory testing and imaging can contribute. If feasible, microbiological cultures before antimicrobial therapy, microscopy, and Gram staining of secretions sampled from the suspected source of infection should be performed. Empirical antibiotic therapy should be informed considering local antimicrobial resistance patterns, and if available follow-on antibiotic therapy should be guided by the antibiotic susceptibility of cultured bacteria. Malaria is diagnosed by rapid diagnostic test or light microscopy of a peripheral blood smear. Antigen or antibody tests are available for specific virus infections such as dengue, influenza, or Ebola virus disease. In immunocompromised patients, coinfection with tuberculosis should be suspected. For the diagnosis of septic shock, clinical indicators of systemic tissue hypoperfusion should be assessed. It is insufficient to rely solely on the presence of arterial hypotension, as arterial hypotension can be a late event. Plasma lactate is an important indicator of tissue hypoperfusion with strong prognostic significance.

Publication types

  • Review