Understanding phosphate sorption characteristics of mineral amendments in relation to stabilising high legacy P calcareous soil

Environ Pollut. 2020 Jun:261:114175. doi: 10.1016/j.envpol.2020.114175. Epub 2020 Feb 13.

Abstract

In China, excessive phosphorus (P) application in protected vegetable fields has led to high legacy P stores. Soil amendment with alum or dolomite is one of many best management practices (BMPs) used to reduce P losses in calcareous soils. However, both the kinetics and mechanisms of P sorption and soil available P in amended soils are understudied. Herein, both aspects were looked at under controlled conditions. Firstly, a sorption study which coupled P concentrations with poorly-crystalline Al hydroxides and dolomite was conducted. Results from this batch experiment showed that P sorption on poorly-crystalline Al hydroxides was homogenous and occurred mainly via displacement of inner-sphere hydroxyl (Al-OH) instead of the formation of AlPO4. However, the amount of sorbed P reached maximum sorption of 73.1 mg g-1 and did not change with further increase in P concentration. It was observed that P adsorbed onto the dolomite surface at low P concentrations, whereas hydroxyl replacement and uneven cluster precipitation of Ca3(PO4)2 occurred at high P concentrations. A second 90 day incubation experiment investigated changes to soil available P and sorption-desorption across variable rates of amendments (0-50 g kg-1). Results showed that alum amendment at a rate of 50 g kg-1 decreased soil CaCl2-P and Olsen-P concentrations by 91.9% and 57.8%, respectively. However, Olsen-P increased when the dolomite rates were <20 g kg-1. Phosphorus sorption-desorption of the amended soil showed alum had higher P sorption efficiency than dolomite at low addition rates (<10 g kg-1). However, soil amended with high dolomite rates (>10 g kg-1) could sorb more P in comparison with alum when P concentrations were increased. The P status of the amended soil was closely connected to the P sorption mechanisms on mineral amendments, soil P concentrations and soil properties.

Keywords: Alum; Dolomite; Phosphorus legacy soil; Sorption-desorption; Stabilisation.

MeSH terms

  • Adsorption
  • China
  • Minerals
  • Phosphates
  • Phosphorus / analysis
  • Soil Pollutants / analysis*
  • Soil*

Substances

  • Minerals
  • Phosphates
  • Soil
  • Soil Pollutants
  • Phosphorus