Nicorandil, a KATP Channel Opener, Attenuates Ischemia-Reperfusion Injury in Isolated Rat Lungs

Lung. 2020 Apr;198(2):315-321. doi: 10.1007/s00408-020-00339-0. Epub 2020 Feb 21.

Abstract

Purpose: Nicorandil is a hybrid between nitrates and KATP channel opener activators. The aim of this study was to evaluate the nicorandil's effects on ischemia-reperfusion (IR) lung injury and examine the mechanism of its effects.

Methods: Isolated rat lungs were divided into 6 groups. In the sham group, the lungs were perfused and ventilated for 150 min. In the IR group, after perfusion and ventilation for 30 min, they were interrupted (ischemia) for 60 min, and then resumed for 60 min. In the nicorandil (N) + IR group, nicorandil 6 mg was added before ischemia (nicorandil concentration was 75 µg ml-1). In the glibenclamide + N + IR group, the L-NAME (Nω-Nitro-L-arginine methyl ester) + N + IR group and ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) + N + IR group, glibenclamide 3 µM, L-NAME 100 µM, and ODQ 30 µM were added 5 min before nicorandil administration, respectively. We measured the coefficient of filtration (Kfc) of the lungs, total pulmonary vascular resistance, and the wet-to-dry lung weight ratio (WW/DW ratio).

Results: Kfc was significantly increased after 60 min reperfusion compared with baseline in the IR group, but no change in the sham group. An increase in Kfc was inhibited in the N + IR group compared with the IR group (0.92 ± 0.28 vs. 2.82 ± 0.68 ml min-1 mmHg-1 100 g-1; P < 0.01). Also, nicorandil attenuated WW/DW ratio was compared with IR group (8.3 ± 0.41 vs. 10.9 ± 2.5; P < 0.05). Nicorandil's inhibitory effect was blocked by glibenclamide and ODQ (P < 0.01), but not by L-NAME.

Conclusions: Nicorandil attenuated IR injury in isolated rat lungs. This protective effect appears to involve its activation as KATP channel opener as well as that of the sGC-cGMP pathway.

Keywords: Ischemia–reperfusion injury; KATP channel opener; Lung; Nicorandil; Nitrate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Capillary Permeability / drug effects
  • Cyclic GMP / metabolism
  • KATP Channels / agonists*
  • KATP Channels / metabolism
  • Lung / blood supply*
  • Lung / drug effects*
  • Lung / metabolism
  • Lung / pathology
  • Lung Injury / metabolism
  • Lung Injury / pathology
  • Lung Injury / prevention & control*
  • Male
  • Membrane Transport Modulators / pharmacology*
  • Nicorandil / pharmacology*
  • Perfusion
  • Pulmonary Circulation / drug effects
  • Pulmonary Edema / metabolism
  • Pulmonary Edema / pathology
  • Pulmonary Edema / prevention & control
  • Rats, Sprague-Dawley
  • Reperfusion Injury / metabolism
  • Reperfusion Injury / pathology
  • Reperfusion Injury / prevention & control*
  • Signal Transduction
  • Soluble Guanylyl Cyclase / metabolism
  • Vascular Resistance / drug effects

Substances

  • KATP Channels
  • Membrane Transport Modulators
  • Nicorandil
  • Soluble Guanylyl Cyclase
  • Cyclic GMP