Graph-based description of tertiary lymphoid organs at single-cell level

PLoS Comput Biol. 2020 Feb 21;16(2):e1007385. doi: 10.1371/journal.pcbi.1007385. eCollection 2020 Feb.

Abstract

Our aim is to complement observer-dependent approaches of immune cell evaluation in microscopy images with reproducible measures for spatial composition of lymphocytic infiltrates. Analyzing such patterns of inflammation is becoming increasingly important for therapeutic decisions, for example in transplantation medicine or cancer immunology. We developed a graph-based assessment of lymphocyte clustering in full whole slide images. Based on cell coordinates detected in the full image, a Delaunay triangulation and distance criteria are used to build neighborhood graphs. The composition of nodes and edges are used for classification, e.g. using a support vector machine. We describe the variability of these infiltrates on CD3/CD20 duplex staining in renal biopsies of long-term functioning allografts, in breast cancer cases, and in lung tissue of cystic fibrosis patients. The assessment includes automated cell detection, identification of regions of interest, and classification of lymphocytic clusters according to their degree of organization. We propose a neighborhood feature which considers the occurrence of edges with a certain type in the graph to distinguish between phenotypically different immune infiltrates. Our work addresses a medical need and provides a scalable framework that can be easily adjusted to the requirements of different research questions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / pathology
  • Female
  • Humans
  • Lymphoid Tissue / anatomy & histology*
  • Single-Cell Analysis*
  • Support Vector Machine

Grants and funding

The work was funded by the German Federal Ministry of Education and Research (BMBF) (e:Med project SYSIMIT, grant FKZ01ZX1608, DLR project management), awarded to authors F.F. (FKZ01ZX1608A), M.M.H. (FKZ01ZX1608B), and R.S. (FKZ01ZX1608C). N. S. S. received funding of the intramural "HiLF" grant program from Hannover Medical School (MHH) and the society of friends of the MHH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.