Impacts of Root Metabolites on Soil Nematodes

Front Plant Sci. 2020 Jan 31:10:1792. doi: 10.3389/fpls.2019.01792. eCollection 2019.

Abstract

Plant parasitic nematodes cause significant crop damage globally. Currently, many nematicides have been banned or are being phased out in Europe and other parts of the world because of environmental and human health concerns. Therefore, we need to focus on sustainable and alternative methods of nematode control to protect crops. Plant roots contain and release a wide range of bioactive secondary metabolites, many of which are known defense compounds. Hence, profound understanding of the root mediated interactions between plants and plant parasitic nematodes may contribute to efficient control and management of pest nematodes. In this review, we have compiled literature that documents effects of root metabolites on plant parasitic nematodes. These chemical compounds act as either nematode attractants, repellents, hatching stimulants or inhibitors. We have summarized the few studies that describe how root metabolites regulate the expression of nematode genes. As non-herbivorous nematodes contribute to decomposition, nutrient mineralization, microbial community structuring and control of herbivorous insect larvae, we also review the impact of plant metabolites on these non-target organisms.

Keywords: attractant; gene expression; hatching stimulants; nematicide; non-target organisms; plant parasitic nematode; repellent; signaling.

Publication types

  • Review