Cellulose-based Biosensor for Bio-molecules Detection in Medical Diagnosis: A Mini-Review

Curr Med Chem. 2020;27(28):4593-4612. doi: 10.2174/0929867327666200221145543.

Abstract

Background: Biosensors are widely applied for the detection of bio-molecules in blood glucose , cholesterol, and gene. Cellulose as the most dominating natural polymer has attracted more and more interest, especially in the field of medicine such as advanced medical diagnosis. Cellulose could endow biosensors with improved biocompatibility, biodegradability and nontoxicity, which could help in medical diagnosis. This mini-review summarizes the current development of cellulose-based biosensors as well as their applications in medical diagnosis in recent years.

Methods: After reviewing recent years' publications we can say that, there are several kinds of cellulose used in biosensors including different cellulose derivatives, bacterial cellulose and nanocellulose. Different types of cellulose-based biosensors, such as membrane, nano-cellulose and others were briefly described in addition to the detection principle. Cellulose-based biosensors were summarized as in the previous papers. The description of various methods used for preparing cellulose-based biosensors was also provided.

Results: Cellulose and its derivatives with their unique chemical structure proved to be versatile materials providing a good platform for achieving immobilizing bioactive molecules in biosensors. These cellulose-based biosensors possess various desirable properties such as accuracy, sensitivity, convenience, low cost and fast response. Among them, cellulose paper-based biosensors have the advantages of low cost and easy operation. Nano-cellulose has unique properties such as a large aspect ratio, good dispersing ability and high absorption capacity.

Conclusion: Cellulose displays a promising application in biosensors which could be used to detect different bio-molecules such as glucose, lactate, urea, gene, cell, amino acid, cholesterol, protein and hydroquinone. In future, the attention will be focused on designing miniaturized, multifunctional, intelligent and integrated biosensors. Creation of low cost and environmentally friendly biosensors is also very important.

Keywords: Cellulose; bacterial cellulose; bio-molecules; biosensor; cellulose derivatives; medical diagnosis; preparation.

Publication types

  • Review

MeSH terms

  • Biosensing Techniques*
  • Cellulose
  • Polymers

Substances

  • Polymers
  • Cellulose