Ionic Strength and Thermal Dual-Responsive Bilayer Hollow Spherical Hydrogel Actuator

Macromol Rapid Commun. 2020 Apr;41(8):e1900543. doi: 10.1002/marc.201900543. Epub 2020 Feb 20.

Abstract

As one of the most promising intelligent materials, polymeric hydrogel actuators could produce reversible shape change upon external stimuli. Although complex shape deformation from 2D to 3D have been achieved, the realization of actuating behavior from 3D to 3D is still a significant challenge. Herein, an effective strategy to develop a novel bilayer hollow spherical hydrogel actuator is proposed. Through immersing a Ca2+ incorporated gelatin core into alginate solution, an ionic-strength-responsive alginate layer will be formed along the gelatin core via alginate-Ca2+ crosslinks, and then another thermo-responsive alginate-poly(2-(dimethylamino)ethyl methacrylate)(Alg-PDMAEMA) layer is introduced to achieve a bilayer hydrogel with ionic strength and temperature dual responsiveness. A hollow hydrogel capsule could be obtained if a spherical gelatin core is applied, and it could produce complex shape deformations from 3D to 3D upon the trigger of ionic strength and temperatures changes. The present work may offer new inspirations for the development of novel intelligent polymeric hydrogel actuators.

Keywords: hydrogel actuators; hydrogel capsules; intelligent materials; ionic strength; shape deformation.

MeSH terms

  • Hydrogels / chemistry*
  • Lipid Bilayers / chemistry*
  • Molecular Structure
  • Osmolar Concentration
  • Particle Size
  • Porosity
  • Surface Properties
  • Temperature*

Substances

  • Hydrogels
  • Lipid Bilayers