How Nanopore Translocation Experiments Can Measure RNA Unfolding

Biophys J. 2020 Apr 7;118(7):1612-1620. doi: 10.1016/j.bpj.2020.01.030. Epub 2020 Feb 4.

Abstract

Electrokinetic translocation of biomolecules through solid-state nanopores represents a label-free single-molecule technique that may be used to measure biomolecular structure and dynamics. Recent investigations have attempted to distinguish individual transfer RNA (tRNA) species based on the associated pore translocation times, ion-current noise, and blockage currents. By manufacturing sufficiently smaller pores, each tRNA is required to undergo a deformation to translocate. Accordingly, differences in nanopore translocation times and distributions may be used to infer the mechanical properties of individual tRNA molecules. To bridge our understanding of tRNA structural dynamics and nanopore measurements, we apply molecular dynamics simulations using a simplified "structure-based" energetic model. Calculating the free-energy landscape for distinct tRNA species implicates transient unfolding of the terminal RNA helix during nanopore translocation. This provides a structural and energetic framework for interpreting current experiments, which can aid the design of methods for identifying macromolecules using nanopores.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Molecular Dynamics Simulation
  • Nanopores*
  • Nanotechnology
  • RNA Folding