Research on the Potential of Spherical Triboelectric Nanogenerator for Collecting Vibration Energy and Measuring Vibration

Sensors (Basel). 2020 Feb 15;20(4):1063. doi: 10.3390/s20041063.

Abstract

The traditional downhole drilling vibration measurement methods which use cable or battery as power supplies increase the drilling costs and reduce the drilling efficiency. This paper proposes a spherical triboelectric nanogenerator, which shows the potential to collect the downhole vibration energy and measure the vibration frequency in a self-powered model. The power generation tests show that the output signal amplitude of the spherical triboelectric nanogenerator increases as the vibration frequency increases, and it can reach a maximum output voltage of 70 V, a maximum current of 3.3 × 10-5 A, and a maximum power of 10.9 × 10-9 W at 8 Hz when a 10-ohm resistor is connected. Therefore, if the power generation is stored for a certain period of time when numbers of the spherical triboelectric nanogenerators are connected in parallel, it may provide intermittent power for the low-power downhole measurement instruments. In addition, the sensing tests show that the measurement range is 0 to 8 Hz, the test error is less than 2%, the applicable working environment temperature is below 100 degrees Celsius, and the installation distance between the spherical triboelectric nanogenerator and the vibration source should be less than the critical value of 150 cm because the output signal amplitude is inversely proportional to the distance.

Keywords: energy harvesting; self-powered; triboelectric nanogenerator; vibration sensor.