Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis

Nanomaterials (Basel). 2020 Feb 14;10(2):328. doi: 10.3390/nano10020328.

Abstract

Lanthanides (Ln), applied mostly in the form of nanoparticles (NPs), are critical to emerging high-tech and green energy industries due to their distinct physicochemical properties. The resulting anthropogenic input of Ln and Ln-based NPs into aquatic environment might create a problem of emerging contaminants. Thus, information on the biological effects of Ln and Ln-based NPs is urgently needed for relevant environmental risk assessment. In this mini-review, we made a bibliometric survey on existing scientific literature with the main aim of identifying the most important data gaps on Ln and Ln-based nanoparticles' toxicity to aquatic biota. We report that the most studied Ln for ecotoxicity are Ce and Ln, whereas practically no information was found for Nd, Tb, Tm, and Yb. We also discuss the challenges of the research on Ln ecotoxicity, such as relevance of nominal versus bioavailable concentrations of Ln, and point out future research needs (long-term toxicity to aquatic biota and toxic effects of Ln to bottom-dwelling species).

Keywords: bibliometric analysis; bioaccumulation; ecotoxicology; nanomaterials; rare-earth elements; safety.

Publication types

  • Review