Twister3: a simple and fast microwire twister

J Neural Eng. 2020 May 19;17(2):026040. doi: 10.1088/1741-2552/ab77fa.

Abstract

Objective: Twisted wire probes (TWPs, e.g. stereotrodes and tetrodes) provide a cheap and reliable method for obtaining high quality, multiple single-unit neural recordings in freely moving animals. Despite their ubiquity, TWPs are constructed using a tedious procedure consisting of manually folding, turning, and fusing microwire. This imposes a significant labor burden on research personnel who use TWPs in their experiments.

Approach: To address this issue, we created Twister3, an open-source microwire twisting machine. This machine features a quick-draw wire feeder that eliminates manual wire folding, an auto-aligning motor attachment mechanism which results in consistently straight probes, and a high speed motor for rapid probe turning.

Main results: Twister3 greatly increases the speed and repeatability of constructing twisted microwire probes compared to existing options. Users with less than one hour of experience using the device were able to make ~70 tetrodes per hour, on average. It is cheap, well documented, and all associated designs and source code are open-source.

Significance: Twister3 significantly reduces the labor burden of creating high-quality TWPs so electrophysiologists can spend more of their time performing recordings rather than making probes. Therefore, this device is of interest to any lab performing TWP neural recordings, for example, using microdrives.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Electrodes, Implanted*