Primary-tiller panicle number is critical to achieving high grain yields in machine-transplanted hybrid rice

Sci Rep. 2020 Feb 18;10(1):2811. doi: 10.1038/s41598-020-59751-4.

Abstract

The development of machine-transplanted hybrid rice is a feasible approach to meet the needs of both high grain yield and high labor efficiency in China, but limited information is available on the critical plant traits associated with high grain yields in machine-transplanted hybrid rice. This study was carried out to identify which type of culms (i.e., main stems and primary and secondary tillers) and which yield components of this culm are critical to achieving high grain yields in machine-transplanted hybrid rice. Field experiments were conducted with two hybrid rice cultivars grown under two densities of machine transplanting in two years. Results showed that total grain yield of main stems and primary and secondary tillers was not significantly affected by cultivar but was significantly affected by density and year. Averaged across cultivars, densities, and years, main stems and primary and secondary tillers contributed about 15%, 50%, and 35% to total grain yield, respectively. Total grain yield was not significantly related to grain yields of main stems and secondary tillers but was positively and significantly related to grain yield of primary tillers. Approximately 85% of the variation in total grain yield was explained by grain yield of primary tillers, which was positively and significantly related to primary-tiller panicles per m2 but not to spikelets per panicle, spikelet filling percentage, or grain weight of primary tillers. Based on these results, it is concluded that primary-tiller panicle number is essential for achieving high grain yields in machine-transplanted hybrid rice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Crop Production
  • Edible Grain / growth & development*
  • Oryza / growth & development*
  • Plant Stems / growth & development*