Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice

Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4623-4631. doi: 10.1073/pnas.1919086117. Epub 2020 Feb 18.

Abstract

The successful application of heterosis in hybrid rice has dramatically improved rice productivity, but the genetic mechanism for heterosis in the hybrid rice remains unclear. In this study, we generated two populations of rice F1 hybrids with present-day commercial hybrid parents, genotyped the parents with 50k SNP chip and genome resequencing, and recorded the phenotype of ∼2,000 hybrids at three field trials. By integrating these data with the collected genotypes of ∼4,200 rice landraces and improved varieties that were reported previously, we found that the male and female parents have different levels of genome introgressions from other rice subpopulations, including indica, aus, and japonica, therefore shaping heterotic loci in the hybrids. Among the introgressed exogenous genome, we found that heterotic loci, including Ghd8/DTH8, Gn1a, and IPA1 existed in wild rice, but were significantly divergently selected among the rice subpopulations, suggesting these loci were subject to environmental adaptation. During modern rice hybrid breeding, heterotic loci were further selected by removing loci with negative effect and fixing loci with positive effect and pyramid breeding. Our results provide insight into the genetic basis underlying the heterosis of elite hybrid rice varieties, which could facilitate a better understanding of heterosis and rice hybrid breeding.

Keywords: divergent selection; genetic introgression; heterosis; hybrid rice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genetic Introgression*
  • Genome, Plant
  • Hybrid Vigor*
  • Oryza / genetics*
  • Plant Breeding / methods
  • Selection, Genetic*