Modelling herbicides mobility in amended soils: Calibration and test of PRZM and MACRO

Sci Total Environ. 2020 May 15:717:137019. doi: 10.1016/j.scitotenv.2020.137019. Epub 2020 Jan 30.

Abstract

Addition of organic residues to soil is a current farming practice but it is not considered in the modelling studies for pesticide risk assessment at regulatory level despite its potential impact on the pesticide dynamics in soil. Thus, the objective of this work was to examine and to compare the ability of PRZM and MACRO pesticide fate models to simulate soil water content, and bromide (Br-, tracer), chlorotoluron and flufenacet concentrations in the soil profiles (0-100 cm) of one agricultural soil, unamended (control soil, S), amended with spent mushroom substrate (S + SMS) or amended with green compost (S + GC). Based on a two-year field-scale dataset, the models were first calibrated against measurements of water and solutes contents in the soil profiles (first year) and then tested without any further model calibration by comparison with the field observations of the second year. In general, the performance of MACRO to simulate the whole dataset in the three soil treatments was higher than that of PRZM. MACRO simulated satisfactorily the water dynamics along the soil profiles whereas it was poorly described by the capacity model PRZM. Both models predicted very well the Br- mobility in control and amended soils after dispersion parameters were fitted to observations. No calibration was necessary to reproduce correctly herbicides vertical distribution in the control soil profile. In the amended soils, MACRO simulations were highly correlated to the observed vertical distribution of flufenacet and chlorotoluron, but calibration of the Kd of chlorotoluron was needed. On the contrary, modelling with PRZM required calibration of Kd and DT50 of both herbicides to obtain an acceptable agreement between observations and predictions in the amended soils. Kd and DT50 calibration was based on the initial dissolved organic carbon contents (DOC) of amended soils. It allowed to take into account the processes that decrease the herbicides sorption on the soil and enhance their bioavailability, but that are not described in PRZM and MACRO (such as the formation of herbicide-DOC mobile complexes). This work showed that models such as PRZM and MACRO are able to simulate the fate of pesticides in amended soils. However, before using these models as predictive tools in large amended soil conditions, and especially in the regulatory context, further modelling studies should focus on other pedoclimatic-pesticides-organic residues combinations, and on longer periods.

Keywords: Bromide tracer; Dissolved organic carbon; Herbicide; Mobility; Pesticide fate model; Soil amendment.