Ruxolitinib Regulates the Autophagy Machinery in Multiple Myeloma Cells

Anticancer Agents Med Chem. 2020;20(18):2316-2323. doi: 10.2174/1871520620666200218105159.

Abstract

Background: Ruxolitinib is a selective JAK1/2 inhibitor approved by the FDA for myelofibrosis in 2014 and nowadays, comprehensive investigations on the potential of the agent as a targeted therapy for haematological malignancies are on the rise. In multiple myeloma which is a cancer of plasma cells, the Interleukin- 6/JAK/STAT pathway is emerging as a therapeutic target since the overactivation of the pathway is associated with poor prognosis.

Objective: In this study, our purpose was to discover the potential anticancer effects of ruxolitinib in ARH-77 multiple myeloma cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line.

Methods: Cytotoxic effects of ruxolitinib in ARH-77 and NCI-BL 2171 cells were determined via WST-1 assay. The autophagy mechanism induced by ruxolitinib measured by detecting autophagosome formation was investigated. Apoptotic effects of ruxolitinib were analyzed with Annexin V-FITC Detection Kit and flow cytometry. We performed RT-qPCR to demonstrate the expression changes of the genes in the IL-6/JAK/STAT pathway in ARH-77 and NCI-BL 2171 cells treated with ruxolitinib.

Results: We identified the IC50 values of ruxolitinib for ARH-77 and NCI-BL 2171 as 20.03 and 33.9μM at the 72nd hour, respectively. We showed that ruxolitinib induced autophagosome accumulation by 3.45 and 1.70 folds in ARH-77 and NCI-BL 2171 cells compared to the control group, respectively. Treatment with ruxolitinib decreased the expressions of IL-6, IL-18, JAK2, TYK2, and AKT genes, which play significant roles in MM pathogenesis.

Conclusion: All in all, ruxolitinib is a promising agent for the regulation of the IL-6/JAK/STAT pathway and interferes with the autophagy mechanism in MM.

Keywords: Interleukin-6; JAK; Ruxolitinib; STAT; autophagy; multiple myeloma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Molecular Structure
  • Multiple Myeloma / drug therapy*
  • Multiple Myeloma / pathology
  • Nitriles
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology*
  • Pyrimidines
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Nitriles
  • Pyrazoles
  • Pyrimidines
  • ruxolitinib