Highly Selective Adsorption on SiSe Monolayer and Effect of Strain Engineering: A DFT Study

Sensors (Basel). 2020 Feb 12;20(4):977. doi: 10.3390/s20040977.

Abstract

The adsorption types of ten kinds of gas molecules (O2, NH3, SO2, CH4, NO, H2S, H2, CO, CO2, and NO2) on the surface of SiSe monolayer are analyzed by the density-functional theory (DFT) calculation based on adsorption energy, charge density difference (CDD), electron localization function (ELF), and band structure. It shows high selective adsorption on SiSe monolayer that some gas molecules like SO2, NO, and NO2 are chemically adsorbed, while the NH3 molecule is physically adsorbed, the rest of the molecules are weakly adsorbed. Moreover, stress is applied to the SiSe monolayer to improve the adsorption strength of NH3. It has a tendency of increment with the increase of compressive stress. The strongest physical adsorption energy (-0.426 eV) is obtained when 2% compressive stress is added to the substrate in zigzag direction. The simple desorption is realized by decreasing the stress. Furthermore, based on the similar adsorption energy between SO2 and NH3 molecules, the co-adsorption of these two gases are studied. The results show that SO2 will promote the detection of NH3 in the case of SO2-NH3/SiSe configuration. Therefore, SiSe monolayer is a good candidate for NH3 sensing with strain engineering.

Keywords: DFT; SiSe monolayer; adsorption; sensor; stress.