The Effect of N-Acetylcysteine on Respiratory Enzymes, ADP/ATP Ratio, Glutathione Metabolism, and Nitrosative Stress in the Salivary Gland Mitochondria of Insulin Resistant Rats

Nutrients. 2020 Feb 12;12(2):458. doi: 10.3390/nu12020458.

Abstract

This is the first study to assess the effect of N-acetylcysteine (NAC) on the mitochondrial respiratory system, as well as free radical production, glutathione metabolism, nitrosative stress, and apoptosis in the salivary gland mitochondria of rats with high-fat diet (HFD)-induced insulin resistance (IR). The study was conducted on male Wistar rats divided into four groups of 10 animals each: C (control, rats fed a standard diet containing 10.3% fat), C + NAC (rats fed a standard diet, receiving NAC intragastrically), HFD (rats fed a high-fat diet containing 59.8% fat), and HFD + NAC (rats fed HFD diet, receiving NAC intragastrically). We confirmed that 8 weeks of HFD induces systemic IR as well as disturbances in mitochondrial complexes of the parotid and submandibular glands of rats. NAC supplementation leads to a significant increase in the activity of complex I, II + III and cytochrome c oxidase (COX), and also reduces the ADP/ATP ratio compared to HFD rats. Furthermore, NAC reduces the hydrogen peroxide production/activity of pro-oxidant enzymes, increases the pool of mitochondrial glutathione, and prevents cytokine formation, apoptosis, and nitrosative damage to the mitochondria in both aforementioned salivary glands of HFD rats. To sum up, NAC supplementation enhances energy metabolism in the salivary glands of IR rats, and prevents inflammation, apoptosis, and nitrosative stress.

Keywords: NAC; apoptosis; inflammation; insulin resistance; mitochondrial activity; nitrosative stress; salivary glands.

MeSH terms

  • Acetylcysteine / pharmacology*
  • Adenosine Diphosphate / metabolism*
  • Adenosine Triphosphate / metabolism*
  • Animals
  • Apoptosis / drug effects
  • Cytokines / metabolism
  • Diet, High-Fat / adverse effects
  • Electron Transport Complex IV / metabolism
  • Energy Metabolism / drug effects
  • Glutathione / metabolism*
  • Hydrogen Peroxide / metabolism
  • Insulin Resistance*
  • Male
  • Mitochondria / metabolism*
  • Nitrosative Stress / drug effects*
  • Rats, Wistar
  • Salivary Glands / metabolism*
  • Salivary Glands / pathology

Substances

  • Cytokines
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Hydrogen Peroxide
  • Electron Transport Complex IV
  • Glutathione
  • Acetylcysteine