Toward an impact assessment of ozone on plant carbon fixation using a process-based plant growth model: A case study of Fagus crenata grown under different soil nutrient levels

Sci Total Environ. 2020 May 10:716:137008. doi: 10.1016/j.scitotenv.2020.137008. Epub 2020 Jan 31.

Abstract

Ozone (O3) in the troposphere, an air pollutant with phytotoxicity, is considered as a driver of global warming, because it reduces plant carbon fixation. Recently, a process-based plant growth model has been used in evaluating the O3 impacts on plants (Schauberger et al., 2019). To make the evaluation more rigorous, we developed a plant growth model and clarified the key factors driving O3-induced change in the whole-plant carbon fixation amount (Cfix). Fagus crenata seedlings were exposed to three O3 levels (charcoal-filtered air or 1.0- or 1.5-folds ambient [O3]) with three soil fertilization levels (non-, low-, or high-fertilized), i.e., a total of nine treatments. The Cfix was reduced in non- and low-fertilized treatments but was unaffected in high-fertilized treatment by O3 fumigation. Our plant growth model could simulate Cfix accurately (<10% error) by considering the impacts of O3 on plant leaf area and photosynthetic capacities, including maximum velocities of carboxylation and electron transport (Vcmax and Jmax, respectively), and the initial slope and convexity of the curve of the electron transport velocity response to photosynthetic photon flux density (φ and θ, respectively). Furthermore, the model revealed that changes in Vcmax and Jmax, φ and θ, or leaf area, caused by 1.5-folds the ambient [O3] fumigation resulted in the following Cfix changes: -1.6, -5.8, or -16.4% in non-fertilized seedlings, -4.1, -4.4, or -9.3% in low-fertilized seedlings, and -4.6, -7.6, or +5.8% in high-fertilized seedlings. Therefore, photosynthetic capacities (particularly φ and θ) and leaf area are important factors influencing the impact of O3 on Cfix of F. crenata seedlings grown under various fertilization levels. Further, the impacts of O3 and soil nutrient on these photosynthetic capacities and plant leaf area should be considered to predict O3-induced changes in carbon fixation by forest tree species using the process-based plant growth model.

Keywords: Carbon fixation amount; Fagus crenata; Plant growth model; Soil fertilization; Tropospheric ozone.

MeSH terms

  • Carbon Cycle*
  • Fagus*
  • Nutrients
  • Ozone
  • Photosynthesis
  • Plant Leaves
  • Soil

Substances

  • Soil
  • Ozone