Technical Principles of Dual-Energy Cone Beam Computed Tomography and Clinical Applications for Radiation Therapy

Adv Radiat Oncol. 2019 Jul 30;5(1):1-16. doi: 10.1016/j.adro.2019.07.013. eCollection 2020 Jan-Feb.

Abstract

Purpose: Medical imaging is an indispensable tool in radiotherapy for dose planning, image guidance and treatment monitoring. Cone beam CT (CBCT) is a low dose imaging technique with high spatial resolution capability as a direct by-product of using flat-panel detectors. However, certain issues such as x-ray scatter, beam hardening and other artifacts limit its utility to the verification of patient positioning using image-guided radiotherapy.

Methods and materials: Dual-energy (DE)-CBCT has recently demonstrated promise as an improved tool for tumor visualization in benchtop applications. It has the potential to improve soft-tissue contrast and reduce artifacts caused by beam hardening and metal. In this review, the practical aspects of developing a DE-CBCT based clinical and technical workflow are presented based on existing DE-CBCT literature and concepts adapted from the well-established library of work in DE-CT. Furthermore, the potential applications of DE-CBCT on its future role in radiotherapy are discussed.

Results and conclusions: Based on current literature and an investigation of future applications, there is a clear potential for DE-CBCT technologies to be incorporated into radiotherapy. The applications of DE-CBCT include (but are not limited to): adaptive radiotherapy, brachytherapy, proton therapy, radiomics and theranostics.

Publication types

  • Review