(-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells

Sci Rep. 2020 Feb 12;10(1):2444. doi: 10.1038/s41598-020-59281-z.

Abstract

Cancer stem cells (H1299-sdCSCs) were obtained from tumour spheres of H1299 human lung cancer cells. We studied low stiffness, a unique biophysical property of cancer cells, in H1299-sdCSCs and parental H1299. Atomic force microscopy revealed an average Young's modulus value of 1.52 kPa for H1299-sdCSCs, which showed low stiffness compared with that of H1299 cells, with a Young's modulus value of 2.24 kPa. (-)-Epigallocatechin gallate (EGCG) reversed the average Young's modulus value of H1299-sdCSCs to that of H1299 cells. EGCG treatment inhibited tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. AXL receptor tyrosine kinase is highly expressed in H1299-sdCSCs and AXL knockdown with siAXLs significantly reduced tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. An AXL-high population of H1299-sdCSCs was similarly reduced by treatment with EGCG and siAXLs. Transplantation of an AXL-high clone isolated from H1299 cells into SCID/Beige mice induced faster development of bigger tumour than bulk H1299 cells, whereas transplantation of the AXL-low clone yielded no tumours. Oral administration of EGCG and green tea extract (GTE) inhibited tumour growth in mice and reduced p-AXL, ALDH1A1, and SLUG in tumours. Thus, EGCG inhibits the stemness and tumourigenicity of human lung cancer cells by inhibiting AXL.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anticarcinogenic Agents / pharmacology*
  • Anticarcinogenic Agents / therapeutic use
  • Axl Receptor Tyrosine Kinase
  • Carcinogenesis / drug effects*
  • Carcinogenesis / metabolism
  • Carcinogenesis / pathology
  • Catechin / analogs & derivatives*
  • Catechin / pharmacology
  • Catechin / therapeutic use
  • Cell Line, Tumor
  • Female
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Mice, SCID
  • Neoplastic Stem Cells / drug effects*
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology
  • Proto-Oncogene Proteins / antagonists & inhibitors
  • Proto-Oncogene Proteins / metabolism*
  • Receptor Protein-Tyrosine Kinases / antagonists & inhibitors
  • Receptor Protein-Tyrosine Kinases / metabolism*

Substances

  • Anticarcinogenic Agents
  • Proto-Oncogene Proteins
  • Catechin
  • epigallocatechin gallate
  • Receptor Protein-Tyrosine Kinases
  • Axl Receptor Tyrosine Kinase