Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices

Light Sci Appl. 2020 Feb 4:9:14. doi: 10.1038/s41377-020-0242-y. eCollection 2020.

Abstract

Direct femtosecond (fs) laser processing is a maskless fabrication technique that can effectively modify the optical, electrical, mechanical, and tribological properties of materials for a wide range of potential applications. However, the eventual implementation of fs-laser-treated surfaces in actual devices remains challenging because it is difficult to precisely control the surface properties. Previous studies of the morphological control of fs-laser-processed surfaces mostly focused on enhancing the uniformity of periodic microstructures. Here, guided by the plasmon hybridisation model, we control the morphology of surface nanostructures to obtain more control over spectral light absorption. We experimentally demonstrate spectral control of a variety of metals [copper (Cu), aluminium (Al), steel and tungsten (W)], resulting in the creation of broadband light absorbers and selective solar absorbers (SSAs). For the first time, we demonstrate that fs-laser-produced surfaces can be used as high-temperature SSAs. We show that a tungsten selective solar absorber (W-SSA) exhibits excellent performance as a high-temperature solar receiver. When integrated into a solar thermoelectric generation (TEG) device, W-SSA provides a 130% increase in solar TEG efficiency compared to untreated W, which is commonly used as an intrinsic selective light absorber.

Keywords: Optical materials and structures; Optics and photonics.