Effect of Organic Modifier and Clay Content on Non-Isothermal Cold Crystallization and Melting Behavior of Polylactide/Organovermiculite Nanocomposites

Polymers (Basel). 2020 Feb 7;12(2):364. doi: 10.3390/polym12020364.

Abstract

In clay/polymer nanocomposites, the crystallization behavior and kinetics of the polymer can be affected by the presence of clay, its content and the degree of miscibility between the clay and the polymer matrix. The effect of two different organomodified vermiculites on the non-isothermal cold crystallization and melting behavior of polylactide (PLA) was studied by differential scanning calorimetry (DSC). In the presence of vermiculites, the cold crystallization of PLA occurred earlier, particularly for the highest content of the most miscible organovermiculite with PLA. The cold crystallinity of PLA decreased at low heating rates, notably at high organoclay loadings, and increased at high heating rates, especially at low vermiculite contents. According to the crystallization half-time, crystallization rate coefficient (CRC), and crystallization rate parameter (CRP) approaches, the cold crystallization rate of PLA increased by incorporating vermiculites, with the effect being most noteworthy for the vermiculite showing better compatibility. The Mo model was successful in describing the non-isothermal cold crystallization kinetics of the PLA/vermiculite composites. The melting behavior was affected by the heating rate and the type and content of clay. The nucleating effect of the most compatible clay resulted in the less perfect crystallites. The activation energy was evaluated using the Kissinger and Takhor methods.

Keywords: differential scanning calorimetry (DSC); kinetics; nanocomposites; non-isothermal crystallization; organomodified vermiculite; polylactic acid; thermal properties.