The Immobilization of Soil Cadmium by the Combined Amendment of Bacteria and Hydroxyapatite

Sci Rep. 2020 Feb 10;10(1):2189. doi: 10.1038/s41598-020-58259-1.

Abstract

The remediation of heavy metal-contaminated soils has attracted increased attention worldwide. The immobilization of metals to prevent their uptake by plants is an efficient way to remediate contaminated soils. This work aimed to seek the immobilization of cadmium in contaminated soils via a combination method. Flask experiments were performed to investigate the effects of hydroxyapatite (HAP) and the Cupriavidus sp. strain ZSK on soil pH and DTPA-extractable cadmium. Pot experiments were carried out to study the effects of the combined amendment on three plant species. The results showed that HAP has no obvious influence on the growth of the strain. With increasing concentrations of HAP, the soil pH increased, and the DTPA-extractable Cd decreased. Via the combined amendment of the strain and HAP (SH), the DTPA-extractable Cd in the soil decreased by 58.2%. With the combined amendment of the SH, the cadmium accumulation in ramie, dandelion, and daisy decreased by 44.9%, 51.0%, and 38.7%, respectively. Moreover, the combined amendment somewhat benefitted the growth of the three plant species and significantly decreased the biosorption of cadmium. These results suggest that the immobilization by the SH combination is a potential method to decrease the available cadmium in the soil and the cadmium accumulation in plants.

Publication types

  • Research Support, Non-U.S. Gov't