Physical evaluation of an ultra-high-resolution CT scanner

Eur Radiol. 2020 May;30(5):2552-2560. doi: 10.1007/s00330-019-06635-5. Epub 2020 Feb 10.

Abstract

Objectives: To evaluate the technical performance of an ultra-high-resolution CT (UHRCT) system.

Methods: The physico-technical capabilities of a novel commercial UHRCT system were assessed and compared with those of a current-generation multi-detector (MDCT) system. The super-high-resolution (SHR) mode of the system uses 0.25 mm (at isocentre) detector elements (dels) in the in-plane and longitudinal directions, while the high-resolution (HR) mode bins two dels in the longitudinal direction. The normal-resolution (NR) mode bins dels 2 × 2, resulting in a del-size equivalent to that of the MDCT system. In general, standard procedures and phantoms were used to perform these assessments.

Results: The UHRCT MTF (10% MTF 4.1 lp/mm) is twice as high as that of the MDCT (10% MTF 1.9 lp/mm), which is comparable to the MTF in the NR mode (10% MTF 1.7 lp/mm). The width of the slice sensitivity profile in the SHR mode (FWHM 0.45 mm) is about 60% of that of the MDCT (FWHM 0.77 mm). Uniformity and CT numbers are within the expected range. Noise in the high-resolution modes has a higher magnitude and higher frequency components compared with MDCT. Low-contrast visibility is lower for the NR, HR and SHR modes compared with MDCT, but about a 14%, for NR, and 23%, for HR and SHR, dose increase gives the same results.

Conclusions: HR and SHR mode scanning results in double the spatial resolution, with about a 23% increase in dose required to achieve the same low-contrast detectability.

Key points: • Resolution on UHRCT is up to twice as high as for the tested MDCT. • With abdominal settings, UHRCT needs higher dose for the same low-contrast detectability as MDCT, but dose is still below achievable levels as defined by current diagnostic reference levels. • The UHRCT system used in normal-resolution mode yields comparable resolution and noise characteristics as the MDCT system.

Keywords: Imaging; Multi-detector computed tomography; Phantoms; Physics.

MeSH terms

  • Equipment Design
  • Humans
  • Phantoms, Imaging
  • Reproducibility of Results
  • Tomography Scanners, X-Ray Computed*
  • Tomography, X-Ray Computed / methods*