Combined Enzyme- and Transition Metal-Catalyzed Strategy for the Enantioselective Syntheses of Nitrogen Heterocycles: (-)-Coniine, DAB-1, and Nectrisine

ACS Omega. 2020 Jan 23;5(4):2005-2014. doi: 10.1021/acsomega.9b03990. eCollection 2020 Feb 4.

Abstract

The enantioselective syntheses of (-)-coniine, DAB-1, and nectrisine have been developed, utilizing a complementary strategy of enzyme- and transition metal-catalyzed reactions. The initial stereocenter was set with >99% enantioselectivity via an enzyme-catalyzed hydrocyanation reaction. Substrate incompatibilities with the natural enzyme were overcome by tactical utilization of ruthenium-catalyzed olefin metathesis to functionalize an enzyme-derived (R)-allylic fragment. The piperidine and pyrrolidine alkaloid natural products were obtained by a route that leveraged regio- and stereoselective palladium-catalyzed 1,3-substitutive reactions.