Design of Rubber Composites with Autonomous Self-Healing Capability

ACS Omega. 2020 Jan 17;5(4):1902-1910. doi: 10.1021/acsomega.9b03516. eCollection 2020 Feb 4.

Abstract

The development of self-healing rubbers is currently under investigation as a strategy to promote their reuse and, hence, reduce their waste. However, autonomous, multicycle self-healing rubbers with good mechanical properties have so far proven difficult to achieve. Here, mechanically robust composites based on epoxidized natural rubber (ENR) and thermally reduced graphene oxide (TRGO) were successfully designed and prepared with a high healing efficiency of up to 85% at room temperature without applying external stimuli. The incorporation of TRGO not only improves the mechanical performance in more than 100% in relation to pristine ENR but also promotes the hydrogen bonding interactions with the rubber. This leads to a homogenous dispersion of TRGO within the ENR matrix, which further increases its self-healing capability.