A Novel NASICON-Type Na4 MnCr(PO4 )3 Demonstrating the Energy Density Record of Phosphate Cathodes for Sodium-Ion Batteries

Adv Mater. 2020 Mar;32(11):e1906348. doi: 10.1002/adma.201906348. Epub 2020 Feb 9.

Abstract

Sodium-ion batteries (SIBs) have attracted incremental attention as a promising candidate for grid-scale energy-storage applications. To meet practical requirements, searching for new cathode materials with high energy density is of great importance. Herein, a novel Na superionic conductor (NASICON)-type Na4 MnCr(PO4 )3 is developed as a high-energy cathode for SIBs. The Na4 MnCr(PO4 )3 nanoparticles homogeneously embedded in a carbon matrix can present an extraordinary reversible capacity of 160.5 mA h g-1 with three-electron reaction at ≈3.53 V during the Na+ extraction/insertion process, realizing an unprecedentedly high energy density of 566.5 Wh kg-1 in the phosphate cathodes for SIBs. It is intriguing to reveal the underlying mechanism of the unique Mn2+ /Mn3+ , Mn3+ /Mn4+ , and Cr3+ /Cr4+ redox couples via X-ray absorption near-edge structure spectroscopy. The whole electrochemical reaction undergoes highly reversible single-phase and biphasic transitions with a moderate volume change of 7.7% through in situ X-ray diffraction and ex situ high-energy synchrotron X-ray diffraction. Combining density functional theory (DFT) calculations with the galvanostatic intermittent titration technique, the superior performance is ascribed to the low ionic-migration energy barrier and desirable Na-ion diffusion kinetics. The present work can offer a new insight into the design of multielectron-reaction cathode materials for SIBs.

Keywords: density functional theory (DFT) computations; energy density; phosphate cathodes; reaction mechanisms; sodium-ion batteries.