Bone material analogues for PET/MRI phantoms

Med Phys. 2020 Jun;47(5):2161-2170. doi: 10.1002/mp.14079. Epub 2020 Mar 13.

Abstract

Purpose: To develop bone material analogues that can be used in construction of phantoms for simultaneous PET/MRI systems.

Methods: Plaster was used as the basis for the bone material analogues tested in this study. It was mixed with varying concentrations of an iodinated CT contrast, a gadolinium-based MR contrast agent, and copper sulfate to modulate the attenuation properties and MRI properties (T1 and T2*). Attenuation was measured with CT and 68 Ge transmission scans, and MRI properties were measured with quantitative ultrashort echo time pulse sequences. A proof-of-concept skull was created by plaster casting.

Results: Undoped plaster has a 511 keV attenuation coefficient (~0.14 cm-1 ) similar to cortical bone (0.10-0.15 cm-1 ), but slightly longer T1 (~500 ms) and T2* (~1.2 ms) MR parameters compared to bone (T1 ~ 300 ms, T2* ~ 0.4 ms). Doping with the iodinated agent resulted in increased attenuation with minimal perturbation to the MR parameters. Doping with a gadolinium chelate greatly reduced T1 and T2*, resulting in extremely short T1 values when the target T2* values were reached, while the attenuation coefficient was unchanged. Doping with copper sulfate was more selective for T2* shortening and achieved comparable T1 and T2* values to bone (after 1 week of drying), while the attenuation coefficient was unchanged.

Conclusions: Plaster doped with copper sulfate is a promising bone material analogue for a PET/MRI phantom, mimicking the MR properties (T1 and T2*) and 511 keV attenuation coefficient of human cortical bone.

Keywords: PET/MRI; attenuation correction; bone materials; doped plaster.

MeSH terms

  • Biomimetic Materials*
  • Bone and Bones / diagnostic imaging*
  • Cortical Bone*
  • Magnetic Resonance Imaging / instrumentation*
  • Phantoms, Imaging*
  • Positron-Emission Tomography / instrumentation*