In-situ DRIFT investigation of photocatalytic reduction and oxidation properties of SiO2@α-Fe2O3 core-shell decorated RGO nanocomposite

Sci Rep. 2020 Feb 7;10(1):2128. doi: 10.1038/s41598-020-59037-9.

Abstract

In this work, SiO2@α-Fe2O3 core-shell decorated RGO nanocomposites were prepared via a simple sol-gel method. The nanocomposites were prepared with different weight percentages (10, 30, and 50 wt %) of the SiO2@α-Fe2O3 core-shell on RGO, and the effects on the structural and optical properties were identified. The photocatalytic reduction and oxidation properties of the nanocomposites in the gas phase were assessed through the reduction of CO2 and oxidation of ethanol using in-situ diffuse-reflectance infrared fourier transform spectroscopy (DRIFT). The prepared nanocomposite with (30 wt %) of SiO2@α-Fe2O3 showed superior photocatalytic activity for the gas phase reduction of CO2 and oxidation of ethanol. Enhancement in the activity was also perceived when the light irradiation was coupled with thermal treatment. The DRIFT results for the nanocomposites indicate the active chemical conversion kinetics of the redox catalytic effect in the reduction of CO2 and oxidation of ethanol. Further, the evaluation of photoelectrochemical CO2 reduction performance of nanocomposites was acquired by linear sweep voltammetry (LSV), and the results showed a significant improvement in the onset-potential (-0.58 V) for the RGO (30 wt %)-SiO2@α-Fe2O3 nanocomposite.