Combinatorial Discriminant Analysis Applied to RNAseq Data Reveals a Set of 10 Transcripts as Signatures of Exposure of Cattle to Mycobacterium avium subsp. paratuberculosis

Animals (Basel). 2020 Feb 5;10(2):253. doi: 10.3390/ani10020253.

Abstract

Paratuberculosis or Johne's disease in cattle is a chronic granulomatous gastroenteritis caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP). Paratuberculosis is not treatable; therefore, the early identification and isolation of infected animals is a key point to reduce its incidence. In this paper, we analyse RNAseq experimental data of 5 ELISA-negative cattle exposed to MAP in a positive herd, compared to 5 negative-unexposed controls. The purpose was to find a small set of differentially expressed genes able to discriminate between exposed animals in a preclinical phase from non-exposed controls. Our results identified 10 transcripts that differentiate between ELISA-negative, clinically healthy, and exposed animals belonging to paratuberculosis-positive herds and negative-unexposed animals. Of the 10 transcripts, five (TRPV4, RIC8B, IL5RA, ERF, CDC40) showed significant differential expression between the three groups while the remaining 5 (RDM1, EPHX1, STAU1, TLE1, ASB8) did not show a significant difference in at least one of the pairwise comparisons. When tested in a larger cohort, these findings may contribute to the development of a new diagnostic test for paratuberculosis based on a gene expression signature. Such a diagnostic tool could allow early interventions to reduce the risk of the infection spreading.

Keywords: Johne’s disease; Mycobacterium avium subsp. paratuberculosis; RNAseq; biomarker discovery; bovine; combinatorial discriminant analysis.