Cycloastragenol as an Exogenous Enhancer of Chondrogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. A Morphological Study

Cells. 2020 Feb 3;9(2):347. doi: 10.3390/cells9020347.

Abstract

Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG's ability to promote cell proliferation, maintain cells in their stable active phenotype, and support the production of cartilaginous extracellular matrix (ECM) in human adipose-derived mesenchymal stem cells (hAMSCs) in up to 28 days of three-dimensional (3D) chondrogenic culture. The hAMSC pellets were cultured in chondrogenic medium (CM) and in CM supplemented with CAG (CAG-CM) for 7, 14, 21, and 28 days. At each time-point, the pellets were harvested for histological (hematoxylin and eosin (H&E)), histochemical (Alcian-Blue) and immunohistochemical analysis (Type I, II, and X collagen, aggrecan, SOX9, lubricin). After excluding CAG's cytotoxicity (MTT Assay), improved cell condensation, higher glycosaminoglycans (sGAG) content, and increased cell proliferation have been detected in CAG-CM pellets until 28 days of culture. Overall, CAG improved the chondrogenic differentiation of hAMSCs, maintaining stable the active chondrocyte phenotype in up to 28 days of 3D in vitro chondrogenic culture. It is proposed that CAG might have a beneficial impact on cartilage regeneration approaches.

Keywords: cartilage regeneration; chondrocyte phenotype; cycloastragenol; human adipose-derived mesenchymal stem cells; hypertrophy; tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aggrecans / metabolism
  • Cell Death / drug effects
  • Cell Differentiation / drug effects*
  • Cell Shape / drug effects*
  • Cells, Cultured
  • Chondrogenesis / drug effects*
  • Collagen / metabolism
  • Female
  • Glycoproteins / metabolism
  • Glycosaminoglycans / metabolism
  • Humans
  • Male
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism
  • Middle Aged
  • SOX9 Transcription Factor / metabolism
  • Sapogenins / pharmacology*
  • Time Factors

Substances

  • Aggrecans
  • Glycoproteins
  • Glycosaminoglycans
  • SOX9 Transcription Factor
  • Sapogenins
  • lubricin
  • Collagen
  • cycloastragenol