Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability

Biotechnol Biofuels. 2020 Feb 3:13:24. doi: 10.1186/s13068-020-1657-7. eCollection 2020.

Abstract

Background: Production and use of bio-based products offer advantages over conventional petrochemicals, yet the relatively high cost of production has restricted their mainstream adoption. Optimization of wastewater treatment processes could reduce capital expenditures, lowering the barrier to market entry for lignocellulosic biorefineries. This paper characterizes wastewater associated with lignocellulosic ethanol production and evaluates potential wastewater treatment operations.

Results: It is found that organic material is intrinsic to bioconversion wastewater, representing up to 260 kg of biological oxygen demand per tonne of feedstock processed. Inorganics in the wastewater largely originate from additions during pretreatment and pH adjustments, which increase the inorganic loading by 44 kg per tonne of feedstock processed. Adjusting the ethanol production process to decrease addition of inorganic material could reduce the demands and therefore cost of waste treatment. Various waste treatment technologies-including those that take advantage of ecosystem services provided by feedstock production-were compared in terms of capital and operating costs, as well as technical feasibility.

Conclusions: It is concluded that wastewater treatment technologies should be better integrated with conversion process design and feedstock production. Efforts to recycle resources throughout the biofuel supply chain through application of ecosystem services provided by adjacent feedstock plantations and recovery of resources from the waste stream to reduce overall capital and operating costs of bioconversion facilities.

Keywords: Anaerobic treatment; Biofuel; Economic analysis; Ecosystem services; Ethanol; Evaporator; Industrial ecology; Poplar; Wastewater treatment.