Warp-Knitted Spacer Fabric Reinforced Syntactic Foam: A Compression Modulus Meso-Mechanics Theoretical Model and Experimental Verification

Polymers (Basel). 2020 Feb 1;12(2):286. doi: 10.3390/polym12020286.

Abstract

In this study, a new type ternary composite, called warp-knitted spacer fabric reinforced syntactic foam (WKSF-SF), with the advantages of high mechanical properties and a lower density, was proposed. Then, a meso-mechanics theoretical model based on the Eshelby-Mori-Tanaka equivalent inclusion method, average stress method and composite hybrid theory was established to predict the compression modulus of WKSF-SF. In order to verify the validity of this model, compression modulus values of theoretical simulations were compared with the quasi-static compression experiment results. The results showed that the addition of suitable WKSF produces at least 15% improvement in the compressive modulus of WKSF-SF compared with neat syntactic foam (NSF). Meanwhile, the theoretical model can effectively simulate the values and variation tendency of the compression modulus for different WKSF-SF samples, and is especially suitable for the samples with smaller wall thickness or a moderate volume fraction of microballoons (the deviations is less than 5%). The study of the meso-mechanical properties of WKSF-SF will help to increase understanding of the compression properties of this new type composite deeply. It is expected that WKSF-SF can be used in aerospace, marine, transportation, construction, and other fields.

Keywords: Meso-mechanics theoretical model; compression modulus; syntactic foam; warp-knitted spacer fabric.