Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO2MA and OEGMA

Polymers (Basel). 2020 Feb 1;12(2):284. doi: 10.3390/polym12020284.

Abstract

Here we report the dual light- and thermo-responsive behavior of well-defined rod-coil block copolymers composed of an azobenzene unit, 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA). Azobenzene-containing rigid rod blocks prepared by chain growth condensation polymerization of the azobenzene containing monomer were used as a macroinitiator of atom transfer radical polymerization (ATRP) after attaching an α-bromoisobutyryl group as an end group. Synthesis of well-defined rod-coil block copolymers with different coil block lengths was achieved by copolymerization of MEO2MA and OEGMA monomers. The synthesized polymers exhibited amphiphilic properties and polymeric micelles were formed in aqueous solution. The light-responsive behaviors of azobenzene moieties, photoisomerization by irradiation of light, and thermo-responsive behaviors of P(MEO2MA-co-OEGMA) coil blocks, aggregation by increment of temperature over lower critical solution temperature, were investigated. A dual stimuli-responsive behavior of the rod-coil block copolymers was observed when exposed to light and heat.

Keywords: MEO2MA; OEGMA; azobenzene; controlled polymerization; light-responsive behavior; rod-coil block copolymer; self-assembly; thermo-responsive behavior.