Upregulation of Cytokines and Differentiation of Th17 and Treg by Dendritic Cells: Central Role of Prostaglandin E2 Induced by Mycobacterium bovis

Microorganisms. 2020 Jan 31;8(2):195. doi: 10.3390/microorganisms8020195.

Abstract

Mycobacterium bovis (M. bovis) is a zoonotic pathogen that causes bovine and human tuberculosis. Dendritic cells play a critical role in initiating and regulating immune responses by promoting antigen-specific T-cell activation. Prostaglandin E2 (PGE2)-COX signaling is an important mediator of inflammation and immunity and might be involved in the pathogenesis of M. bovis infection. Therefore, this study aimed to reveal the character of PGE2 in the differentiation of naïve CD4+ T cells induced by infected dendritic cells (DCs). Murine bone marrow-derived DCs were pre-infected with M. bovis and its attenuated strain M. bovis bacillus Calmette-Guérin (BCG). Then, the infected DCs were co-cultured with naïve CD4+ T cells with or without the cyclooxygenase (COX) inhibitor indomethacin. Quantitative RT-PCR analysis and protein detection showed that PGE2/COX-2 signaling was activated, shown by the upregulation of PGE2 production as well as COX-2 and microsomal PGE2 synthase (mPGES1) transcription in DCs specifically induced by M. bovis and BCG infection. The further co-culture of infected DCs with naïve CD4+ T cells enhanced the generation of inflammatory cytokines IL-17 and IL-23, while indomethacin suppressed their production. Following this, the differentiation of regulatory T cells (Treg) and Th17 cell subsets was significantly induced by the infected DCs rather than uninfected DCs. Meanwhile, M. bovis infection stimulated significantly higher levels of IL-17 and IL-23 and the differentiation of Treg and Th17 cell subsets, while BCG infection led to higher levels of TNF-α and IL-12, but lower proportions of Treg and Th17 cells. In mice, M. bovis infection generated more bacterial load and severe abnormalities in spleens and lungs, as well as higher levels of COX-2, mPGE2 expression, Treg and Th17 cell subsets than BCG infection. In conclusion, PGE2/COX-2 signaling was activated in DCs by M. bovis infection and regulated differentiation of Treg and Th17 cell subsets through the crosstalk between DCs and naive T cells under the cytokine atmosphere of IL-17 and IL-23, which might contribute to M. bovis pathogenesis in mice.

Keywords: BCG; COX-2; Mycobacterium bovis; PGE2; Th17; Treg; dendritic cells.