A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM

PLoS One. 2020 Feb 5;15(2):e0225408. doi: 10.1371/journal.pone.0225408. eCollection 2020.

Abstract

A high-voltage generator (HVG) is an essential part of a radio frequency identification electrically erasable programmable read-only memory (RFID-EEPROM). An HVG circuit is used to generate a regulated output voltage that is higher than the power supply voltage. However, the performance of the HVG is affected owing to the high-power dissipation, high-ripple voltage and low-pumping efficiency. Therefore, a regulator circuit consists of a voltage divider, comparator and a voltage reference, which are respectively required to reduce the ripple voltage, increase pumping efficiency and decrease the power dissipation of the HVG. Conversely, a clock driving circuit consists of the current-starved ring oscillator (CSRO), and the non- overlapping clock generator is required to drive the clock signals of the HVG circuit. In this study, the Mentor Graphics EldoSpice software package is used to design and simulate the HVG circuitry. The results showed that the designed CSRO dissipated only 4.9 μW at 10.2 MHz and that the phase noise was only -119.38 dBc/Hz at 1 MHz. Moreover, the proposed charge pump circuit was able to generate a maximum VPP of 13.53 V and it dissipated a power of only 31.01 μW for an input voltage VDD of 1.8 V. After integrating all the HVG modules, the results showed that the regulated HVG circuit was also able to generate a higher VPP of 14.59 V, while the total power dissipated was only 0.12 mW with a chip area of 0.044 mm2. Moreover, the HVG circuit produced a pumping efficiency of 90% and reduced the ripple voltage to <4 mV. Therefore, the integration of all the proposed modules in HVG ensured low-ripple programming voltages, higher pumping efficiency, and EEPROMs with lower power dissipation, and can be extensively used in low-power applications, such as in non-volatile memory, radiofrequency identification transponders, on-chip direct current DC-DC converters.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Power Supplies*
  • Electricity
  • Equipment Design / methods*
  • Radio Frequency Identification Device*
  • Radio Waves
  • Software*
  • Transistors, Electronic

Grants and funding

The authors would like to express sincere gratitude to the research grant GUP-2017-069 from Universiti Kebangsaan Malaysia and Ministry of Education Malaysia through the research project TRGS / 1/2015 / UKM / 02/5/2 for financial support.