Considerations on the taxonomy and morphology of Microcotyle spp.: redescription of M. erythrini van Beneden & Hesse, 1863 (sensu stricto) (Monogenea: Microcotylidae) and the description of a new species from Dentex dentex (L.) (Teleostei: Sparidae)

Parasit Vectors. 2020 Jan 31;13(1):45. doi: 10.1186/s13071-020-3878-9.

Abstract

Background: Microcotyle erythrini van Beneden & Hesse, 1863 (Platyhelminthes: Monogenea) and other closely related species of the genus are often considered as cryptic. Records in hosts other than the type-host with no species confirmation by molecular analyses have contributed to this situation.

Methods: Gill parasites of five sparid fishes, Boops boops (L.), Pagellus erythrinus (L.), P. acarne (Risso), Dentex dentex (L.) and Pagrus pagrus (L.), from the Western Mediterranean off Spain were collected. Specimens of Microcotyle spp. were characterised both molecularly and morphologically. Partial fragments (domains D1-D3) of the 28S rRNA gene and the cytochrome c oxidase subunit 1 (cox1) gene were amplified and used for molecular identification and phylogenetic reconstruction. Principal components analysis was used to look for patterns of morphological separation.

Results: Molecular analyses confirmed the identity of three species: M. erythrini ex P. erythrinus and Pa. pagrus; M. isyebi Bouguerche, Gey, Justine & Tazerouti, 2019 ex B. boops; and a species new to science described herein, M. whittingtoni n. sp. ex D. dentex. The specific morphological traits and confirmed hosts (P. erythrinus and Pa. pagrus) are delimited here in order to avoid misidentifications of M. erythrini (sensu stricto). Microcotyle erythrini (s.s.) is mostly differentiated by the shape of its haptor, which is also longer than in the other congeners. New morphological and molecular data are provided for M. isyebi from the Spanish Mediterranean enlarging the data on its geographical range. Microcotyle whittingtoni n. sp. is described from D. dentex and distinguished from the remaining currently recognised species of the genus by the number and robustness of the clamps.

Conclusions: New diagnostic morphological traits useful to differentiate Microcotyle spp. are suggested: (i) haptor dimensions including lobes; (ii) the thickness of the clamps; (iii) the size and shape of spines of the genital atrium; (iv) the extension of the posterior extremities of vitelline fields; and (v) the shape of egg filaments. The use of new morphological approaches may allow considering these species of Microcotyle as being pseudocryptic. The use of representative undamaged specimens that have been genetically confirmed as conspecific is considered crucial to avoid abnormally wide morphological ranges that prevent species differentiation.

Keywords: Clamp morphology; Haptor morphology; M. isyebi; M. whittingtoni n. sp.; Microcotyle erythrini (sensu stricto); Pseudocrypsis.

MeSH terms

  • Animals
  • Classification*
  • Electron Transport Complex IV / genetics
  • Gills / parasitology
  • Perciformes / parasitology*
  • Phylogeny
  • RNA, Ribosomal, 28S / genetics
  • Trematoda / anatomy & histology*
  • Trematoda / classification*
  • Trematoda / genetics

Substances

  • RNA, Ribosomal, 28S
  • Electron Transport Complex IV