Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy

Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3627-3636. doi: 10.1073/pnas.1914153117. Epub 2020 Feb 4.

Abstract

The chaperone protein SmgGDS promotes cell-cycle progression and tumorigenesis in human breast and nonsmall cell lung cancer. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, facilitate the activation of oncogenic members of the Ras and Rho families of small GTPases through membrane trafficking via regulation of the prenylation pathway. SmgGDS-607 interacts with newly synthesized preprenylated small GTPases, while SmgGDS-558 interacts with prenylated small GTPases. We determined that cancer cells have a high ratio of SmgGDS-607:SmgGDS-558 (607:558 ratio), and this elevated ratio is associated with reduced survival of breast cancer patients. These discoveries suggest that targeting SmgGDS splicing to lower the 607:558 ratio may be an effective strategy to inhibit the malignant phenotype generated by small GTPases. Here we report the development of a splice-switching oligonucleotide, named SSO Ex5, that lowers the 607:558 ratio by altering exon 5 inclusion in SmgGDS pre-mRNA (messenger RNA). Our results indicate that SSO Ex5 suppresses the prenylation of multiple small GTPases in the Ras, Rho, and Rab families and inhibits ERK activity, resulting in endoplasmic reticulum (ER) stress, the unfolded protein response, and ultimately apoptotic cell death in breast and lung cancer cell lines. Furthermore, intraperitoneal (i.p.) delivery of SSO Ex5 in MMTV-PyMT mice redirects SmgGDS splicing in the mammary gland and slows tumorigenesis in this aggressive model of breast cancer. Taken together, our results suggest that the high 607:558 ratio is required for optimal small GTPase prenylation, and validate this innovative approach of targeting SmgGDS splicing to diminish malignancy in breast and lung cancer.

Keywords: RAP1GDS1; SmgGDS; alternative splicing; prenylation; small GTPases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Carcinogenesis
  • Cell Line, Tumor
  • Female
  • Guanine Nucleotide Exchange Factors / genetics*
  • Guanine Nucleotide Exchange Factors / metabolism*
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • Male
  • Mice
  • Monomeric GTP-Binding Proteins / genetics
  • Monomeric GTP-Binding Proteins / metabolism
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Protein Prenylation
  • RNA Splicing

Substances

  • Guanine Nucleotide Exchange Factors
  • Protein Isoforms
  • RAP1GDS1 protein, human
  • Monomeric GTP-Binding Proteins