Asymmetric LSCF Membranes Utilizing Commercial Powders

Materials (Basel). 2020 Jan 30;13(3):614. doi: 10.3390/ma13030614.

Abstract

Powders of constant morphology and quality are indispensable for reproducible ceramic manufacturing. In this study, commercially available powders were characterized regarding their microstructural properties and screened for a reproducible membrane manufacturing process, which was done by sequential tape casting. Basing on this, the slurry composition and ratio of ingredients were systematically varied in order to obtain flat, crack-free green tapes suitable for upscaling of the manufacturing process. Debinding and sintering parameters were adjusted to obtain defect-free membranes with diminished bending. The crucial parameters are the heating ramp, sintering temperature, and dwell time. The microstructure of the asymmetric membranes was investigated, leading to a support porosity of approximately 35% and a membrane layer thickness of around 20 µm. Microstructure and oxygen flux are comparable to asymmetric La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membranes manufactured from custom-made powder, showing an oxygen flux of > 1 mLcm-2min at 900 °C in air/Ar gradient.

Keywords: asymmetric membrane manufacturing; ceramic powder characterization; oxygen transport membrane; tape casting.