Conformational spread and dynamics in allostery of NMDA receptors

Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3839-3847. doi: 10.1073/pnas.1910950117. Epub 2020 Feb 3.

Abstract

Allostery can be manifested as a combination of repression and activation in multidomain proteins allowing for fine tuning of regulatory mechanisms. Here we have used single molecule fluorescence resonance energy transfer (smFRET) and molecular dynamics simulations to study the mechanism of allostery underlying negative cooperativity between the two agonists glutamate and glycine in the NMDA receptor. These data show that binding of one agonist leads to conformational flexibility and an increase in conformational spread at the second agonist site. Mutational and cross-linking studies show that the dimer-dimer interface at the agonist-binding domain mediates the allostery underlying the negative cooperativity. smFRET on the transmembrane segments shows that they are tightly coupled in the unliganded and single agonist-bound form and only upon binding both agonists the transmembrane domain explores looser packing which would facilitate activation.

Keywords: FRET; MD simulations; NMDA receptors; allostery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation
  • Animals
  • Binding Sites
  • Dimerization
  • Glutamic Acid / chemistry
  • Glutamic Acid / metabolism
  • Glycine / chemistry
  • Glycine / metabolism
  • Molecular Dynamics Simulation
  • Protein Binding
  • Protein Conformation
  • Protein Domains
  • Rats
  • Receptors, N-Methyl-D-Aspartate / chemistry*
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / metabolism*

Substances

  • NMDA receptor A1
  • Receptors, N-Methyl-D-Aspartate
  • Glutamic Acid
  • Glycine
  • N-methyl D-aspartate receptor subtype 2A