Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM

Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3397-3404. doi: 10.1073/pnas.1914813117. Epub 2020 Feb 3.

Abstract

Organisms use inorganic ions and macromolecules to regulate crystallization from amorphous precursors, endowing natural biominerals with complex morphologies and enhanced properties. The mechanisms by which modifiers enable these shape-preserving transformations are poorly understood. We used in situ liquid-phase transmission electron microscopy to follow the evolution from amorphous calcium carbonate to calcite in the presence of additives. A combination of contrast analysis and infrared spectroscopy shows that Mg ions, which are widely present in seawater and biological fluids, alter the transformation pathway in a concentration-dependent manner. The ions bring excess (structural) water into the amorphous bulk so that a direct transformation is triggered by dehydration in the absence of morphological changes. Molecular dynamics simulations suggest Mg-incorporated water induces structural fluctuations, allowing transformation without the need to nucleate a separate crystal. Thus, the obtained calcite retains the original morphology of the amorphous state, biomimetically achieving the morphological control of crystals seen in biominerals.

Keywords: biomineralization; calcium carbonate; crystallization; magnesium; morphology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.